
Axiom Contracts Security Review

Auditors

Desmond Ho, Lead Security Researcher

Riley Holterhus, Lead Security Researcher

Blockdev, Security Researcher

Lucas Goiriz, Junior Security Researcher

David Chaparro, Junior Security Researcher

Report prepared by: Lucas Goiriz

November 26, 2023

Contents

1 About Spearbit 3

2 Introduction 3

3 Risk classification 3
3.1 Impact . 3
3.2 Likelihood . 3
3.3 Action required for severity levels . 3

4 Executive Summary 4

5 Findings 5
5.1 Medium Risk . 5

5.1.1 Lack of upper bounds in queryDeadlineInterval may lead to locked funds and/or DoS . . . 5
5.2 Low Risk . 6

5.2.1 [Axiom - 01] Paying to caller of fulfillOffchainQuery is vulnerable to mempool sniping . . 6
5.2.2 [Axiom - 02] queryId should commit to targetChainId . 6
5.2.3 [Axiom - 03] Padded Merkle mountain range cannot be updated after updateOld 6
5.2.4 Missing non-zero checks allow event emission spamming . 7
5.2.5 Lack of zero address check in withdraw and deposit can burn ether 7
5.2.6 No enforcement of callback gas limit for on-chain queries . 7
5.2.7 Allow refundQuery to a custom to address . 8
5.2.8 Add code length check for callback.target . 9
5.2.9 increaseQueryGas can be called even if the contracts are in a frozen state 9
5.2.10 Missing sanity zero-address checks may lead to undesired behavior 10
5.2.11 Missing input validation on fee parameters . 10
5.2.12 Use ExcessivelySafeCall for external calls where return value isn't checked 11
5.2.13 Excess ETH sent for increaseQueryGas() isn't accounted for 11

5.3 Gas Optimization . 11
5.3.1 Boundary equality case can be moved to do proofMmrPeaks extension 11
5.3.2 Minimise external calls . 12
5.3.3 Intentional appendCompleteLeaves() no-op can be removed 12
5.3.4 bool costs more gas than uint . 13
5.3.5 Arithmetic operations can be optimized for gas savings . 13
5.3.6 Usage of custom errors and revert strings inconsistency . 14
5.3.7 Multiple peakLength typecasting to uint32 . 15
5.3.8 start initialization can be optimized . 15
5.3.9 Iterators can be optimized . 15
5.3.10 CHAIN_ID can be set to internal due to the existence of a custom getter 16
5.3.11 User input validation should have preference over other actions 16

5.4 Informational . 22
5.4.1 Naive provers may spend more funds to compute than the amount awarded to them 22
5.4.2 Remove redundant code to compute queryId . 22
5.4.3 Passing ETH to callback target is unsupported . 23
5.4.4 Callback call success is not monitored . 23
5.4.5 frozen state in withdraw introduces a centralization risk . 23
5.4.6 Missing indexed event parameters . 24
5.4.7 Use named imports to improve clarity and efficiency . 24
5.4.8 Usage of axiomProverAddress can be simplified . 25
5.4.9 Open up access to addAllowedProver and removeAllowedProver 25
5.4.10 PMMR size initialization can be more accurate . 25
5.4.11 Idempotent checks may be performed to avoid emitting events with no changes 26
5.4.12 Favor Yul switch-case statements over multiple if statements 27
5.4.13 Goerli testnet will stop working in 2024 . 28
5.4.14 Variable naming improvements . 28

1

5.4.15 Incorrect peaksLength value set for MMRs . 28
5.4.16 virtual is redundant in interfaces and it can be removed . 29
5.4.17 Unused logic and statements . 29
5.4.18 Absent/incomplete natspec affects readability and maintenance 29

6 Additional Comments 33

2

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction

Axiom gives smart contracts trustless access to the entire history of Ethereum and arbitrary ZK-verified compute
over it. Developers can send on-chain queries into Axiom, which are trustlessly fulfilled with ZK-verified results
sent in a callback to the developer's smart contract. This allows developers to build rich on-chain applications
without additional trust assumptions.

Disclaimer : This security review does not guarantee against a hack. It is a snapshot in time of axiom-v2-contracts-
working according to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High Impact: Medium Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

• High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

• Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

• Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood

• High - almost certain to happen, easy to perform, or not easy but highly incentivized

• Medium - only conditionally possible or incentivized, but still relatively likely

• Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels

• Critical - Must fix as soon as possible (if already deployed)

• High - Must fix (before deployment if not already deployed)

• Medium - Should fix

• Low - Could fix

3

https://spearbit.com

4 Executive Summary

Over the course of 14 days in total, Axiom engaged with Spearbit to review the axiom-v2-contracts-working proto-
col. In this period of time a total of 43 issues were found.

Summary

Project Name Axiom

Repository axiom-v2-contracts-working

Commit 41fab5...22d8

Type of Project Data availability, ZK

Audit Timeline Oct 16 to Oct 27

Two week fix period Oct 27 - Nov 10

Issues Found

Severity Count Fixed Acknowledged

Critical Risk 0 0 0

High Risk 0 0 0

Medium Risk 1 1 0

Low Risk 13 12 1

Gas Optimizations 11 5 6

Informational 18 15 3

Total 43 33 10

4

https://www.axiom.xyz/
https://spearbit.com
https://github.com/axiom-crypto/axiom-v2-contracts-working
https://github.com/axiom-crypto/axiom-v2-contracts-working
https://github.com/axiom-crypto/axiom-v2-contracts-working/tree/41fab5e0f39811178a476ab2eac751290cc422d8

5 Findings

5.1 Medium Risk

5.1.1 Lack of upper bounds in queryDeadlineInterval may lead to locked funds and/or DoS

Severity: Medium Risk

Context: AxiomV2Query.sol#L98, AxiomV2Query.sol#L150

Description: The lack of upper bounds in queryDeadlineInterval may lead to two different harmful scenarios.

1. Ether included within a query is expected to be returned to the query creator in case the query is not fulfilled
after a certain amount of blocks, through a call to refundQuery. This mechanism is created to protect users
from scenarios in which provers can't/won't fulfill their queries. However, the amount of time someone might
need to wait until getting their funds back is in the interval [0,type(uint32).max - block.number), which is
stored in the queries mapping.

Taking into account the following facts:

• The current block.number (at the time of writing) in mainnet is 18_383_880.

• In mainnet, every 12s approximately, a block is produced.

• type(uint32).max is the maximum value to be stored, i.e. 4_294_967_295.

• The time to reach type(uint32).max goes beyond human scales, i.e. approximately 1626 years from
the current block.number.

Even in the case of setting the deadline to 1 or 2 years, the user would have frozen funds and no other option
but waiting for the deadline or query fulfillment. This shouldn't be so harmful in case the query can be fufilled
quickly, or in case of a zero-day bug appearance and the query can't be filled, or in the case all the provers
are down, the user may have to wait that amount of time.

2. In the case an initial huge (valid) value for queryDeadlineInterval is set, which makes
uint32(block.number) + queryDeadlineInterval > type(uint32).max (i.e. overflow, as
deadlineBlockNumber's type is uint32), all calls to _sendQuery methods will revert. This may pass
unalerted initially as it is valid for queryDeadlineInterval. The reason for this are that the solidity
compiler version lies above 0.8.0 (i.e. automatic overflow/underflow checks) and the following lines within
_sendQuery functions:

queries[queryId] = AxiomQueryMetadata({

state: AxiomQueryState.Active,

deadlineBlockNumber: uint32(block.number) + queryDeadlineInterval, //@audit can overflow and revert

payee: address(0),

payment: maxQueryPri

});

This scenario results in a bad user experience, as they would be wasting gas for transactions until the
Axiom multisig with TIMELOCK_ROLE changes queryDeadlineInterval to a smaller value that doesn't make
uint32(block.number) + queryDeadlineInterval > type(uint32).max.

Recommendation: Consider adding an upper bound for the different chains. For example, from 1 to 4 weeks in
blocks:

• 1 week upperbound for mainnet considering ~12s: ~50,400 blocks.

• 1 week upperbound for arbitrum considering ~0.26s: ~2,326,923 blocks.

Axiom: Added validation on mainnet and testnets in PR 88.

Spearbit: Fixed. The queryDeadlineInterval now has an upper bound of 50_400 (1 week of 12 second blocks),
and a helper function has been created to support different upper bounds as more chains are supported.

5

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol#L98
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol#L150
https://etherscan.io/chart/blocktime
https://officercia.mirror.xyz/d798TVQyA1ALq3qr1R9vvujdF7x-erXxK2wQWwbgRKY
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/88

5.2 Low Risk

5.2.1 [Axiom - 01] Paying to caller of fulfillOffchainQuery is vulnerable to mempool sniping

Severity: Low Risk

Context: AxiomV2Query.sol

Description: We currently tag proofs with payee for on-chain queries and enforce that on-chain query payments
are made to payee. This prevents mempool copying of proofs.

For off-chain queries which are fulfilled in fulfillOffchainQuery, we pass caller to the callback, which allows
the callback recipient to make payment to that address. However, because caller is not tagged in the proof, this
is vulnerable to mempool sniping of proofs.

Axiom: We plan to fix this by enforcing that caller == payee, which enables a downstream contract to make
payment without causing MEV issues. The fix can be found in PR 116.

Spearbit: Fixed. Will revert if caller != payee.

5.2.2 [Axiom - 02] queryId should commit to targetChainId

Severity: Low Risk

Context: AxiomV2Query.sol

Description: Right now, any query with the same computation and referencing the same data may have the same
queryId.

In future cross-chain / rollup use cases, we envision deploying the protocol on different target chains, meaning it
will be helpful for off-chain backends to have queryId be a unique key across different target chains.

We can achieve this by committing to targetChainId within queryId.

Axiom: Fixed in PR 117. There is a subsequent PR (PR 130) to keep a consistent convention that all chainId
types are uint64.

Spearbit: Fixed.

5.2.3 [Axiom - 03] Padded Merkle mountain range cannot be updated after updateOld

Severity: Low Risk

Context: AxiomV2Core.sol#L230

Description: The incorrect check in AxiomV2Core.sol#L230 of appendHistoricalPMMR may cause blockhashP-

mmr updates to be blocked.

If blockhashPmmr.size is not a multiple of BLOCK_BATCH_SIZE, the check above will prevent usage of appendHis-
toricalPMMR. This will not occur in ordinary usage, where appendHistoricalPMMR is used after updateHistorical
to bootstrap the padded Merkle mountain range from genesis. However, it can cause an issue in the following sce-
nario:

• The AxiomV2Core contract is in a state where blockhashPmmr.size is not a multiple of BLOCK_BATCH_SIZE.

• updateRecent is not called for more than 1024 blocks.

• To get AxiomV2Core back in sync, we call updateRecent and then updateOld several times.

At this point, it will not be possible to continue appending to blockhashPmmr due to the check above in appendHis-

toricalPMMR.

Axiom: We plan to fix this by changing the check:

- || startBlockNumber != pmmr.size // startBlockNumber must be the size of PMMR

+ || startBlockNumber != pmmr.size - (pmmr.size % BLOCK_BATCH_SIZE) // startBlockNumber must be the

size of the complete leaves of PMMR,!

6

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/116
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/117
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/130
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L230
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Core.sol#L230

And updating the appending logic afterwards accordingly to account for the fact that blockhashPmmr.size may not
start as a multiple of BLOCK_BATCH_SIZE.

Addressed in PR 111.

Spearbit: Fixed. 2 key changes were made. First, the start block number is checked to be the size of the start
block number. Second, the roots have been extended by 1 such that the last entry contains the zero padded
merkle root of a possibly incomplete batch (size < 1024) of blocks.

5.2.4 Missing non-zero checks allow event emission spamming

Severity: Low Risk

Context: AxiomV2Query.sol#L387, AxiomV2Query.sol#L421

Description: Functions withdraw() and deposit() are meant to facilitate deposits and withdrawals. However,
they do not check if non-zero ether is deposited or withdrawn. Given their permissionless nature, this allows anyone
to grief the system with zero ether deposits causing emission of events which may hinder indexing/monitoring
systems.

Recommendation: Add non-zero checks for deposit and withdraw before event emission.

Axiom: This issue has been addressed in PR 93.

Spearbit: Fixed.

5.2.5 Lack of zero address check in withdraw and deposit can burn ether

Severity: Low Risk

Context: AxiomV2Query.sol#L387, AxiomV2Query.sol#L421

Description: AxiomV2Query contract has functions that send value to an address specified by the user. If the user
accidentally uses the default value in the destination address, it will be address(0) and this will effectively burn the
funds.

Recommendation: To prevent unintentional loss of funds, it is recommended to add a require statement to check
that the destination address is not address(0).

Axiom: This issue has been addressed in PR 85.

Spearbit: Fixed.

5.2.6 No enforcement of callback gas limit for on-chain queries

Severity: Low Risk

Context: AxiomV2Query.sol#L287-L297

Description: For on-chain queries, sendQuery() and sendQueryWithIpfsData() take in a uint32 callback-

GasLimit input, which is the gasLimit the payee wishes the callback to be called with. However, there
isn't an enforcement of the callback gas limit passed to the callback. The gas remaining for the callback could be
less than the requested callbackGasLimit amount (eg. prover sends enough gas for proof verification but not the
callback), and the query would still be fulfilled.

A prover has incentive to pass in as little gas as required since he can receive the max payment of maxQueryPri
regardless of outcome.

Recommendation: Consider checking the remaining gas is at least the requested amount. Note that doing
callback.target.call{gas: callbackGasLimit}(...) won't work because the return value isn't checked.

With consideration of the gas forwarding rule, the check could be as follows:

if (gasleft() <= queries[queryId].callbackGasLimit * 64 / 63) revert InsufficientGasForCallback()

7

https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/111
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/e61ca81987bb8cf8bce4668b38f033919a9e99e6/contracts/query/AxiomV2Query.sol#L387
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/e61ca81987bb8cf8bce4668b38f033919a9e99e6/contracts/query/AxiomV2Query.sol#L421
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/93
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L387
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L421
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/85
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L287-L297

where AxiomQueryMetadata is extended to store the callback gas limit as well.

Axiom: I'm a bit concerned that the gas usage to complete the computation of the condition in

if (gasleft() <= queries[queryId].callbackGasLimit * 64 / 63)

may cause the true amount of gas available to be forwarded to dip below queries[queryId].callbackGasLimit

by a small amount. Having trouble quantifying this due to some Foundry issues, e.g. Foundry issue 6164.

One solution would be to allocate a small gas buffer (I think less than 500 should be OK since the SLOAD is warm)
to complete the conditional computation, but would appreciate any suggestions.

This issue has been addressed in PR 92.

Spearbit: Agree with having a small buffer to be on the safe side.

A buffer of 300 gas has been given, and the requested callbackGasLimit is passed to the target.

if (gasleft() - 300 <= queries[queryId].callbackGasLimit * 64 / 63) {

revert InsufficientGasForCallback();

}

(success,) = callback.target.excessivelySafeCall(queries[queryId].callbackGasLimit, 0, 0, data);

Axiom: Added a cap on the external call gas to avoid the opposite problem in PR 120.

Spearbit: Fixed.

5.2.7 Allow refundQuery to a custom to address

Severity: Low Risk

Context: AxiomV2Query.sol#L351-L385

Description: In the current implementation, the refundee field (which is a user input parameter) of the query-

Witness struct is not enforced to be msg.sender at sendQuery functions. In fact, it can even be address(0), and
under that scenario remaining assets from the query can be locked by error.

Recommendation: It would be interesting to have 2 roles: a creator/owner of the query (the actual refundee) and
a to address as input of refundQuery functions. Then, it would be necessary to only allow calls to refundQuery

on behalf of msg.sender. An example implementation is shown below:

function refundQuery(AxiomV2QueryWitness calldata queryWitness, address to) external onlyNotFrozen {

if (msg.sender != queryWitness.refundee) {

revert CannotRefundIfNotRefundee();

}

if (to == address(0)){

revert CannotBeZeroAddress();

}

// ...

balances[to] += queries[queryId].payment;

// ...

Axiom: Good points re validation of refundee / allowing a to address in the refundQuery call. We decided to
address this in PR 94 by:

• Setting refundee to msg.sender if it is address(0).

• Not adding a to address in the refundQuery function to reduce complexity.

The idea here is that if no refundee is given, the only way to permission a refund will be to require access to
msg.sender, in which case offering to has minimal additional value.

Spearbit: Fixed.

8

https://github.com/foundry-rs/foundry/issues/6164
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/92
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/120
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L351-L385
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/94

5.2.8 Add code length check for callback.target

Severity: Low Risk

Context: AxiomV2Core.sol#L321, AxiomV2Core.sol#L326, AxiomV2Query.sol#L287, AxiomV2Query.sol#L337,
AxiomV2Query.sol#L505

Description: The current implementation performs the callback.target != address(0) check to decide on
whether performing the callback or not. Nonetheless, callback.target may not be address(0) but an address
without code (for example, an EOA), which passes the check and gets the callback executed without purpose. If
the address' code length was verified instead, neither address(0) nor addresses without code would be used for
the callback. An example of this check is shown below:

+ uint256 size;

+ { // Wrapped this to avoid stack too deep

+ address callbackTarget = callback.target;

+ assembly {

+ size := extcodesize(callbackTarget)

+ }

+ }

+ if (size > 0) {

- if (callback.target != address(0)) {

// ...

In other cases such as AxiomV2Core.sol#L321, AxiomV2Core.sol#L326 and AxiomV2Query.sol#L505 checks
aren't present at all.

Recommendation: Consider checking for a code length greater than 0 instead of address(0) to account for the
scenarios in which the address specified for the callback has no code.

Axiom: There are two types of external calls here:

• Verifier contracts: These should be updated infrequently (only for major protocol upgrades or security vulner-
ability fixes). We validate updates with zero address checks to guard against inadvertent deployment issues,
but it is ultimately up to users to decide whether to trust the contracts. In the interest of reducing contract
size and complexity, we don't think it adds much to security to also validate code length.

• User-specified callbacks: We use callback.target == address(0) to indicate that the callback should not
be called. In all other cases, it's on the user to ensure that target has the appropriate callback implemented.
Although we can certainly add more validation, ultimately the user must check that their target is appropriate,
so we don't think this validation benefits security too much.

Spearbit: Acknowledged.

5.2.9 increaseQueryGas can be called even if the contracts are in a frozen state

Severity: Low Risk

Context: AxiomV2Query.sol#L229-L244

Description: The increaseQueryGas function in the AxiomV2Query contract allows users to increase the gas
allocation for their queries by paying an additional fee. However, this function can currently be called even when
the contracts are in a frozen state. When the system is frozen (usually due to an unforeseen vulnerability), it is
not reasonable to allow users to increase their query gas since this operation is expected to be ineffective.

Recommendation: To maintain consistency and protect users, the increaseQueryGas function should include the
onlyNotFrozen modifier, ensuring that it cannot be called when the system is in a frozen state. This will prevent
users from potentially wasting funds on increasing query gas during a period when it is most likely to be ineffective,
aligning the system’s functionality with user expectations and system integrity.

Axiom: Yes, agree with this, we should make this have the onlyNotFrozen modifier. For context, we intend the
frozen state to only be triggered in the event of an unforeseen ZK circuit or smart contract vulnerability. This issue
has been addressed in PR 84.

9

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/3254e9ecee834f73b05da75eb1456fa840dc06a9/contracts/core/AxiomV2Core.sol#L321
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/3254e9ecee834f73b05da75eb1456fa840dc06a9/contracts/core/AxiomV2Core.sol#L326
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/e61ca81987bb8cf8bce4668b38f033919a9e99e6/contracts/query/AxiomV2Query.sol#L287
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/e61ca81987bb8cf8bce4668b38f033919a9e99e6/contracts/query/AxiomV2Query.sol#L337
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/e61ca81987bb8cf8bce4668b38f033919a9e99e6/contracts/query/AxiomV2Query.sol#L505
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/3254e9ecee834f73b05da75eb1456fa840dc06a9/contracts/core/AxiomV2Core.sol#L321
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/3254e9ecee834f73b05da75eb1456fa840dc06a9/contracts/core/AxiomV2Core.sol#L326
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/e61ca81987bb8cf8bce4668b38f033919a9e99e6/contracts/query/AxiomV2Query.sol#L505
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol#L229-L244
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/84

Spearbit: Fixed.

5.2.10 Missing sanity zero-address checks may lead to undesired behavior

Severity: Low Risk

Context: AxiomV2Query.sol#L114-L131, AxiomV2Core.sol#L257-L270, AxiomV2Client.sol#L15,
AxiomTimelock.sol#L20

Description: Certain logic should implement zero-address checks to avoid undesired behavior.

• verifierAddress, axiomHeaderVerifierAddress and axiomProverAddress implement these checks at the
initializer. Nonetheless, these checks are absent at their updater functions, which leaves an open door
to setting by mistake default value address(0) by the TIMELOCK_ROLE Axiom multisig. This scenario would
create a temporal DoS until the value is changed back to a valid one.

• For immutable variables such as axiomV2QueryAddress this is recommended to be included too.

• For the timelock controller, a zero minDelay effectively negates the purpose of having a delay, which is con-
trary to the expected outcome. With a value of 0 or a very low number, concerns arise about administrative
actions being executed without providing users sufficient time to make an informed decision about whether
to continue using the system. Examples of critical actions that could be affected include upgradeTo() and
updatingFees(), among others.

Recommendation: Consider adding zero-address checks on the aforementioned variables within their updater
functions, and revert with the already defined appropriate error messages.

Axiom: Added zero-address checks for updater functions in PR 83. Added zero-address check for
axiomV2QueryAddress in PR 134. Minimum delay added in PR 119.

Spearbit: Fixed.

5.2.11 Missing input validation on fee parameters

Severity: Low Risk

Context: AxiomV2Query.sol#L156, AxiomV2Query.sol#L163

Description: updateProofVerificationGas() and updateAxiomQueryFee() update two "fee" parameters
without enforcing any bound checks on them. Therefore, the updated values can be as extreme as 0 or
type(uint256).max. This may affect user experience if malicious/compromised TIMELOCK_ROLE user executes a
fee change that front-runs some query, resulting in the user spending much more ether to fulfill said query, or in
extreme cases (if the user has not enough funds to backup the query) a DoS.

Recommendation: Setting reasonable upper and lower bounds on these fee parameters would improve trust-
lessness and it would be harder to create a DoS situation under the scenario of a /compromised TIMELOCK_ROLE

user front-running a query with a fee change. In fact, the documentation specifies some initial values (400000 and
0.003 ether for proofVerificationGas and axiomQueryFee respectively) that may be used as a reference when
establishing the upper and lower bounds.

Axiom: This issue has been addressed in PR 90.

One thing to note is the frontrunning attack would require the signers of the TIMELOCK_ROLE to be compromised
and for a new address to be added to the TIMELOCK_ROLE by the compromised signers. This would be publicly
visible for the interval of the timelock, which would trigger a security concern / likely freezing of the contract. As a
result, I think the attack described is quite unlikely.

Spearbit: Fixed.

10

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol#L114-L131
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L257-L270
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L15
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/aaf531f503a0b95457a7741114c20e409c4c51db/contracts/libraries/access/AxiomTimelock.sol#L20
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L15
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/aaf531f503a0b95457a7741114c20e409c4c51db/contracts/libraries/access/AxiomTimelock.sol#L20
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/83
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/134
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/119
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L156
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L163
https://github.com/axiom-crypto/axiom-v2-contracts-working#readme
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/90

5.2.12 Use ExcessivelySafeCall for external calls where return value isn't checked

Severity: Low Risk

Context: AxiomV2Query.sol#L287, AxiomV2Query.sol#L337

Description: fulfillQuery() and fulfillOffchainQuery() makes external calls to user specified callback

address through the low-level .call. If it returns a huge amount of data, the current call can run out of gas when
copying it to memory.

Since data copying isn't required here, we can skip it through ExcessivelySafeCall library. You can specify the
number of bytes from return data to be copied to memory, which in this case can be 0.

Recommendation: Use ExcessivelySafeCall instead of .call.

Axiom: Fixed with PR 107.

Spearbit: Fixed.

5.2.13 Excess ETH sent for increaseQueryGas() isn't accounted for

Severity: Low Risk

Context: AxiomV2Query.sol#L239-L242

Description: Any excess ETH sent, where msg.value > newMaxQueryPri - oldAmount, isn't accounted for,
resulting in ETH permanently stuck in the contract.

Recommendation: Either ensure strict equality (check msg.value == newMaxQueryPri - oldAmount) or refund
the excess ETH to the caller.

Axiom: Fixed in PR 91 by adding excess ETH to the user's balance. To avoid any reentrancy concern from
refunding, I've chosen to attribute any excess balance to the user in AxiomV2Query.

Spearbit: Fixed.

5.3 Gas Optimization

5.3.1 Boundary equality case can be moved to do proofMmrPeaks extension

Severity: Gas Optimization

Context: AxiomV2HeaderVerifier.sol#L193-L194

Description: In the case where proofMmrSize - mmrWitness.snapshotPmmrSize == IAx-

iomV2State(axiomCoreAddress).blockhashPmmrSize() - proofMmrSize, instead of extending pmmrSnapshots

to proofMmrPeaks which requires decommitting the PMMR, it would probably be cheaper to do the other case of
extending proofMmrPeaks to blockhashPmmr.

Recommendation:

|| proofMmrSize - mmrWitness.snapshotPmmrSize

- <= IAxiomV2State(axiomCoreAddress).blockhashPmmrSize() - proofMmrSize

+ < IAxiomV2State(axiomCoreAddress).blockhashPmmrSize() - proofMmrSize

Axiom: Acknowlegded. We've opted to keep this as-is pending future gas optimization.

Spearbit: Acknowledged.

11

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L287
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L337
https://github.com/nomad-xyz/ExcessivelySafeCall
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/107
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L239-L242
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/91
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L193-L194

5.3.2 Minimise external calls

Severity: Gas Optimization

Context: AxiomV2HeaderVerifier.sol#L192-L194, AxiomV2HeaderVerifier.sol#L264-L268

Description: In the first reference, there is a possible repeated call to blockhashPmmrSize(). The result can be
cached and invoked before the if and else-if cases since they utilise its value.

In the second reference, there are mmrWitness.proofMmrPeaks.length - BLOCK_BATCH_DEPTH external calls to
fetch the PMMR peaks for comparison against the proofMMr peaks. It would be a lot cheaper if there was a method
to batch these calls into a single one (eg. take in a start index and length).

Recommendation: Cache the call for IAxiomV2State(axiomCoreAddress).blockhashPmmrSize() for the first
reference.

uint32 corePmmrSize = IAxiomV2State(axiomCoreAddress).blockhashPmmrSize();

if (

mmrWitness.snapshotPmmrSize >= block.number - 256

&& (

proofMmrSize > corePmmrSize

|| proofMmrSize - mmrWitness.snapshotPmmrSize

<= corePmmrSize - proofMmrSize

)

) {

...

} else if (proofMmrSize >= block.number - 256) {

if (proofMmrSize > corePmmrSize) {

revert NoMoreRecentBlockhashMMR();

}

...

}

And for the second reference, introduce a getter method that enables fetching multiple peaks.

Axiom: This issue has been addressed in PR 101.

Spearbit: Fixed.

5.3.3 Intentional appendCompleteLeaves() no-op can be removed

Severity: Gas Optimization

Context: AxiomV2HeaderVerifier.sol#L130-L148

Description: In one specific case in verifyQueryHeaders(), it is possible that the proofMmrSize is exactly one
batch smaller than mmrWitness.snapshotPmmrSize. In this scenario, the code will call appendCompleteLeaves()
on the PMMR with an empty list, which is a no-op. It could save some gas if appendCompleteLeaves() is not
invoked in the first place.

Recommendation: Consider filtering this edge case out by restricting the if statement wrapping the appendCom-

pleteLeaves() call. This can be accomplished by keeping the proofMmrSize updated as follows:

12

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L192-L194
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L264-L268
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/101
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L130-L148

if (proofMmrSize % BLOCK_BATCH_SIZE > 0) {

// complete the first 10 peaks of `proofMmrPeaks` to a full Merkle root and update `proofPmmr`

bytes32 completedLeaf =

proofBatchMmr.getComplementMerkleRoot(BLOCK_BATCH_DEPTH, mmrWitness.mmrComplementOrPeaks);

proofPmmr.updatePaddedLeaf(BLOCK_BATCH_SIZE, completedLeaf, BLOCK_BATCH_SIZE);

+ proofMmrSize += BLOCK_BATCH_SIZE - (proofMmrSize % BLOCK_BATCH_SIZE);

}

if (mmrWitness.snapshotPmmrSize - (mmrWitness.snapshotPmmrSize % BLOCK_BATCH_SIZE) > proofMmrSize) {

// append additional complete leaves

proofPmmr.appendCompleteLeaves(BLOCK_BATCH_SIZE, mmrWitness.mmrComplementOrPeaks[11:]);

}

Note that this code would no longer enforce that mmrWitness.mmrComplementOrPeaks[11:] is indeed
empty. However, this is similar to other parts of the code which do not inspect any unused parts of
mmrWitness.mmrComplementOrPeaks.

Axiom: Acknowledged. We think this fix can work, but it causes proofMmrSize to change within the execution
of verifyQueryHeaders, which we think may be confusing. We've opted to keep this as-is pending future gas
optimization.

Spearbit: Acknowledged.

5.3.4 bool costs more gas than uint

Severity: Gas Optimization

Context: AxiomAccess.sol#L11

Description: In Solidity, using bool for storage variables can be more expensive in terms of gas than using
uint256 or other full-word types. This is due to the Solidity compiler's defense mechanisms against contract
upgrades and pointer aliasing, each write operation to a bool storage variable results in an additional SLOAD
operation. This extra operation is required to first read the slot's contents, replace the bits taken up by the boolean,
and then write back the result.

The overall gas change was: Overall gas change: -2288250 (-0.000%)

Recommendation: To optimize the gas efficiency, consider using uint256 for storage variables instead of bool
as noticed by Open Zeppelin.

You can declare a couple of constant to make this more intuitive, FROZEN == 1 and NOT_FROZEN == 2 or just use
the actual variable as such and compare the value.

Axiom: We decided not to make this optimization for clarity, as freezing / unfreezing should only occur in the case
of an unforeseen ZK circuit or smart contract vulnerability.

Spearbit: Acknowledged.

5.3.5 Arithmetic operations can be optimized for gas savings

Severity: Gas Optimization

Context: AxiomV2Query.sol#L93, AxiomV2HeaderVerifier.sol#L92, AxiomV2HeaderVerifier.sol#L229,
AxiomV2HeaderVerifier.sol#L239, AxiomV2HeaderVerifier.sol#L254, AxiomV2HeaderVerifier.sol#L264,
AxiomV2HeaderVerifier.sol#L275, AxiomV2HeaderVerifier.sol#L315, MerkleTree.sol#L16, Merkle-
Tree.sol#L21, MerkleMountainRange.sol#L35, MerkleMountainRange.sol#L47, MerkleMountainRange.sol#L58,
MerkleMountainRange.sol#L73, MerkleMountainRange.sol#L104, MerkleMountainRange.sol#L146, MerkleMoun-
tainRange.sol#L181, PaddedMerkleMountainRange.sol#L63, AxiomV2Core.sol#L120, AxiomV2Core.sol#L204,
AxiomV2Core.sol#L207, AxiomV2Core.sol#L235, AxiomV2Core.sol#L308, AxiomV2Configuration.sol#L54-L55,
MerkleTree.sol#L15-L16, MerkleTree.sol#L19, AxiomV2Query.sol#L544-L566, AxiomV2Prover.sol#L93-L97,
MerkleMountainRange.sol#L108-L114

13

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L11
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol#L23-L35
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L93
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L92
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L229
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L239
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L254
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L264
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L275
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L315
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L16
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L21
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L21
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L35
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L47
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L58
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L73
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L104
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L146
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L181
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L181
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L63
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L120
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L204
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L207
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L235
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L308
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/configuration/AxiomV2Configuration.sol#L54-L55
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L15-L16
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L19
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol#L544-L566
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L93-L97
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/1467440c813812c08eefd98f981474fa09e35d38/contracts/libraries/MerkleMountainRange.sol#L108-L114

Description: There are some arithmetic operations that can save gas:

• Prefix operator costs less gas than postfix operator: AxiomV2Query.sol#L93, MerkleTree.sol#L16, Merkle-
Tree.sol#L21 are cases where i++ can be ++i safely.

• Increments can be unchecked increments in for and while loops: AxiomV2Query.sol#L93,
AxiomV2HeaderVerifier.sol#L92, AxiomV2HeaderVerifier.sol#L229, AxiomV2HeaderVerifier.sol#L239,
AxiomV2HeaderVerifier.sol#L254, AxiomV2HeaderVerifier.sol#L264, AxiomV2HeaderVerifier.sol#L275, Ax-
iomV2HeaderVerifier.sol#L315, MerkleTree.sol#L16, MerkleTree.sol#L21, MerkleMountainRange.sol#L35,
MerkleMountainRange.sol#L47, MerkleMountainRange.sol#L58, MerkleMountainRange.sol#L73,
MerkleMountainRange.sol#L104, MerkleMountainRange.sol#L146, MerkleMountainRange.sol#L181,
PaddedMerkleMountainRange.sol#L63, AxiomV2Core.sol#L120, AxiomV2Core.sol#L204,
AxiomV2Core.sol#L207, AxiomV2Core.sol#L235, AxiomV2Core.sol#L308.

• Bit shifts cost less gas than multiplying/dividing by 2:

– AxiomV2Configuration.sol#L54-L55: << 6 can be used instead of * 64 .

– AxiomV2Query.sol#L544-L566 and AxiomV2Prover.sol#L93-L97: << 5 can be used instead of * 32.

– MerkleTree.sol#L15-L16: >> 1 can be used instead of / 2.

– MerkleTree.sol#L19: >> 2 can be used instead of / 4.

– MerkleMountainRange.sol#L108-L114: j << 1 can be used instead of 2 * j.

Recommendation: Consider implementing the previous changes for gas optimization.

Axiom: Implemented the first two categories in PR 108.

The bit-shift optimizations did not seem to have an impact when using Foundry gas metering to measure.

Spearbit: Fixed.

5.3.6 Usage of custom errors and revert strings inconsistency

Severity: Gas Optimization

Context: AxiomV2Prover.sol#L38, AxiomV2Prover.sol#L39, AxiomV2Prover.sol#L40, AxiomV2Prover.sol#L41,
AxiomV2Prover.sol#L42, AxiomResultStore.sol#L26, AxiomResultStore.sol#L27, AxiomResultStore.sol#L28,
AxiomResultStore.sol#L29, AxiomV2HeaderVerifier.sol#L40, AxiomV2HeaderVerifier.sol#L41, Ax-
iomV2HeaderVerifier.sol#L42, AxiomV2HeaderVerifier.sol#L43, AxiomV2HeaderVerifier.sol#L84,
AxiomTimelock.sol#L25, PaddedMerkleMountainRange.sol#L81, PaddedMerkleMountainRange.sol#L108,
AxiomV2Core.sol#L60, AxiomV2Core.sol#L61, AxiomV2Core.sol#L62, AxiomV2Core.sol#L66, Ax-
iomV2Core.sol#L67, AxiomV2Core.sol#L68, ExampleV2Client.sol#L24, AxiomV2Client.sol#L26,
AxiomV2Client.sol#L41, AxiomV2Prover.sol#L105, MerkleTree.sol#L63

Description: Starting from Solidity version 0.8.4, the introduction of custom errors has provided a more gas-
efficient way to handle errors compared to the traditional require and revert with string messages. When a
require statement fails or a revert is called with a string argument, the EVM needs to store the string in memory,
which consumes a significant amount of gas (due to the usage of MSTORE opcodes). In contrast, custom errors,
defined using the error keyword, allow developers to define specific error types with associated parameters, which
can significantly reduce the gas cost when an error occurs.

In some parts of the code, custom errors are declared and later used, while in other parts, classic revert strings
are used in require or revert statements. These could be replaced by custom errors, which would reduce
deployment and runtime costs while contributing to codebase consistency. It also avoids wasting gas with long
revert strings (each extra memory word of bytes past the initial 32 incurs in an additional MSTORE, which costs
3 units of gas).

Recommendation: Consider using custom errors exclusively to improve gas efficiency and increase codebase
consistency.

Axiom: The issue has been addressed in PR 82.

14

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L93
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L16
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L21
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L21
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L93
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L92
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L229
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L239
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L254
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L264
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L275
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L315
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L315
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L16
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L21
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L35
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L47
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L58
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L73
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L104
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L146
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L181
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L63
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L120
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L204
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L207
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L235
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L308
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/configuration/AxiomV2Configuration.sol#L54-L55
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol#L544-L566
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L93-L97
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L15-L16
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L19
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/1467440c813812c08eefd98f981474fa09e35d38/contracts/libraries/MerkleMountainRange.sol#L108-L114
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/108
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L38
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L39
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L40
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L41
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L42
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomResultStore.sol#L26
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomResultStore.sol#L27
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomResultStore.sol#L28
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomResultStore.sol#L29
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L40
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L41
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L42
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L42
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L43
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L84
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomTimelock.sol#L25
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L81
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L108
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L60
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L61
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L62
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L66
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L67
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L67
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L68
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/ExampleV2Client.sol#L24
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L26
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L41
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L105
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L63
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L128-L159
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L239
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/82

Spearbit: Fixed.

5.3.7 Multiple peakLength typecasting to uint32

Severity: Gas Optimization

Context: AxiomV2HeaderVerifier.sol#L90

Description: peaksLength can be defined as uint32 instead of uint256 to avoid subsequent castings later on in
the function.

Recommendation: In addition, consider renaming the variable to proofMmmrPeaksLength for clarity.

- uint256 peaksLength = mmrWitness.proofMmrPeaks.length;

+ uint32 proofMmmrPeaksLength = uint32(mmrWitness.proofMmrPeaks.length);

And then replacing all instances of uint32(mmrWitness.proofMmrPeaks.length) by proofMmmrPeaksLength.

Axiom: This issue has been addressed in PR 96.

Spearbit: Fixed.

5.3.8 start initialization can be optimized

Severity: Gas Optimization

Context: AxiomV2Core.sol#L215

Description: start is defined, calculated and casted to uint32 every iteration. This can be made more optimal.

Recommendation: Define start outside the loop, then shift the increment to after the event emission so that only
an addition by BLOCK_BATCH_SIZE is required.

uint32 start = startBlockNumber;

for (uint256 i; i < HISTORICAL_NUM_ROOTS; ++i) {

...

emit HistoricalRootUpdated(start, prevHash, roots[i], BLOCK_BATCH_SIZE);

start += BLOCK_BATCH_SIZE;

}

Axiom: We decided not to make this optimization as we expect updateHistorical to only be called in the initial
bootstrap phase for AxiomV2Core.

Spearbit: Acknowledged.

5.3.9 Iterators can be optimized

Severity: Gas Optimization

Context: AxiomV2Core.sol#L206-L209, AxiomV2HeaderVerifier.sol#L264-L268

Description: In the first reference, a couple of subtractions are required for index calculation when iterating
endHashProofs from the back. These subtractions can be avoided if iteration is performed from the start.

In the second reference, an addition operation can be removed by offsetting the iterator by BLOCK_BATCH_DEPTH.

Recommendation:

bytes32 proofCheck = endHashProofs[i][0];

for (uint256 j = 1; j <= BLOCK_BATCH_DEPTH; ++j) {

proofCheck = Hash.keccak(proofCheck, endHashProofs[i][j]);

}

15

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L90
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/96
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L215
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L206-L209
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L264-L268

for (uint32 idx = BLOCK_BATCH_DEPTH; idx < mmrWitness.proofMmrPeaks.length; ++idx) {

if (

IAxiomV2State(axiomCoreAddress).blockhashPmmrPeaks(idx - BLOCK_BATCH_DEPTH)

!= proofMmr.peaks[idx]

) {

revert ClaimedMMRDoesNotMatchRecent();

}

}

Axiom: We decided not to implement this to reduce complexity of changes.

Spearbit: Acknowledged.

5.3.10 CHAIN_ID can be set to internal due to the existence of a custom getter

Severity: Gas Optimization

Context: AxiomV2HeaderVerifier.sol#L23

Description: CHAIN_ID is declared as a public variable, which leads to the solidity compiler to create for it a
default getter function called CHAIN_ID(). Nevertheless, within AxiomV2HeaderVerifier there is already a manual
implementation of a more readable getter function called getSourceChainId().

Having two different getter functions defined for the same variable contributes to an unnecessary increase in
contract code size (and consequently deployment gas costs), and the added redundancy may add obscurity to the
codebase.

Recommendation: Consider having a single getter for CHAIN_ID, which yields a slightly shorter contract code size
and thus slightly cheaper deployment costs. There are two options:

• Remove the getSourceChainId() function and use the default generated getter CHAIN_ID().

• Declare CHAIN_ID as internal, which results in the absence of the CHAIN_ID() getter.

The second recommendation would be preferred, as getSourceChainId() is more explicit and readable.

Axiom: Fixed in PR 81 by declaring CHAIN_ID as internal.

Spearbit: Fixed.

5.3.11 User input validation should have preference over other actions

Severity: Gas Optimization

Context: AxiomResultStore.sol#L23-L29, AxiomV2HeaderVerifier.sol#L37-L43, AxiomV2Prover.sol#L35-
L42, AxiomV2Query.sol#L58-L82, AxiomV2Query.sol#L246-L278, AxiomV2Query.sol#L301-L329,
AxiomV2Query.sol#L351-L385, AxiomV2Query.sol#L457-L471

Description: User input validation on a function should precede any other action within the function scope. Oth-
erwise, under the scenario in which execution arrives to a revert due to a wrong user input, gas is wasted on all
the computation that has occurred prior to the check that yielded the revert.

Recommendation: Consider applying the following code refactorings to save some gas under the aforementioned
scenarios:

• AxiomResultStore.sol#L23-L29:

16

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L23
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L289
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/81
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomResultStore.sol#L23-L29
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L37-L43
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L35-L42
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L35-L42
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L58-L82
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L246-L278
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L301-L329
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L351-L385
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L457-L471
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomResultStore.sol#L23-L29

function initialize(address axiomQueryAddress, address timelock, address guardian, address unfreeze)

public

initializer

{

- __UUPSUpgradeable_init();

- __AxiomAccess_init_unchained();

require(axiomQueryAddress != address(0), "AxiomResultStore: axiomQueryAddress cannot be zero

address");,!

require(timelock != address(0), "AxiomResultStore: timelock cannot be zero address");

require(guardian != address(0), "AxiomResultStore: guardian cannot be zero address");

require(unfreeze != address(0), "AxiomResultStore: unfreeze cannot be zero address");

+ __UUPSUpgradeable_init();

+ __AxiomAccess_init_unchained();

// ...

• AxiomV2HeaderVerifier.sol#L37-L43:

function initialize(address _axiomCoreAddress, address timelock, address guardian, address unfreeze)

public

initializer

{

- __UUPSUpgradeable_init();

- __AxiomAccess_init_unchained();

require(_axiomCoreAddress != address(0), "AxiomV2HeaderVerifier: Axiom core address is zero");

require(timelock != address(0), "AxiomV2HeaderVerifier: timelock address is zero");

require(guardian != address(0), "AxiomV2HeaderVerifier: guardian address is zero");

require(unfreeze != address(0), "AxiomV2HeaderVerifier: unfreeze address is zero");

+ __UUPSUpgradeable_init();

+ __AxiomAccess_init_unchained();

axiomCoreAddress = _axiomCoreAddress;

emit UpdateAxiomCoreAddress(_axiomCoreAddress);

// ...

• AxiomV2Prover.sol#L35-L42:

17

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L37-L43
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L35-L42

function initialize(

address _axiomQueryAddress,

address prover,

address timelock,

address guardian,

address unfreeze

) public initializer {

- __UUPSUpgradeable_init();

- __AxiomAccess_init_unchained();

require(_axiomQueryAddress != address(0), "AxiomV2Prover: _axiomQueryAddress cannot be zero

address");,!

require(prover != address(0), "AxiomV2Prover: prover cannot be zero address");

require(timelock != address(0), "AxiomV2Prover: timelock cannot be zero address");

require(guardian != address(0), "AxiomV2Prover: guardian cannot be zero address");

require(unfreeze != address(0), "AxiomV2Prover: unfreeze cannot be zero address");

+ __UUPSUpgradeable_init();

+ __AxiomAccess_init_unchained();

axiomQueryAddress = _axiomQueryAddress;

emit UpdateAxiomQueryAddress(_axiomQueryAddress);

// ...

• AxiomV2Query.sol#L58-L82:

function initialize(AxiomV2QueryInit calldata init) public initializer {

- __UUPSUpgradeable_init();

- __AxiomAccess_init_unchained();

if (init.axiomHeaderVerifierAddress == address(0)) {

revert AxiomHeaderVerifierAddressIsZero();

}

if (init.verifierAddress == address(0)) {

revert VerifierAddressIsZero();

}

if (init.axiomProverAddress == address(0)) {

revert AxiomProverAddressIsZero();

}

if (init.axiomResultStoreAddress == address(0)) {

revert AxiomResultStoreAddressIsZero();

}

if (init.timelock == address(0)) {

revert TimelockAddressIsZero();

}

if (init.guardian == address(0)) {

revert GuardianAddressIsZero();

}

if (init.unfreeze == address(0)) {

revert UnfreezeAddressIsZero();

}

+ __UUPSUpgradeable_init();

+ __AxiomAccess_init_unchained();

// ...

• AxiomV2Query.sol#L246-L278:

function fulfillQuery(

IAxiomV2HeaderVerifier.MmrWitness calldata mmrWitness,

bytes32[] calldata computeResults,

bytes calldata proof,

AxiomV2Callback calldata callback,

18

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L58-L82
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L246-L278

AxiomV2QueryWitness calldata queryWitness

) external onlyRole(PROVER_ROLE) onlyNotFrozen {

- uint256 queryId = uint256(

- keccak256(

- abi.encodePacked(

- queryWitness.caller,

- queryWitness.userSalt,

- queryWitness.queryHash,

- queryWitness.callbackHash,

- queryWitness.refundee

-)

-)

-);

if (queryWitness.callbackHash != keccak256(abi.encodePacked(callback.target,

callback.extraData))) {,!

revert CallbackHashDoesNotMatchQueryWitness();

}

AxiomProofCallbackData memory proofCallbackData = _verifyAndWriteResult(mmrWitness, proof);

if (queryWitness.queryHash != proofCallbackData.queryHash) {

revert QueryHashDoesNotMatchProof();

}

+ if (proofCallbackData.computeResultsHash != keccak256(abi.encodePacked(computeResults))) {

+ revert ComputeResultsHashDoesNotMatch();

+ }

+ uint256 queryId = uint256(

+ keccak256(

+ abi.encodePacked(

+ queryWitness.caller,

+ queryWitness.userSalt,

+ queryWitness.queryHash,

+ queryWitness.callbackHash,

+ queryWitness.refundee

+)

+)

+);

if (queries[queryId].state != AxiomQueryState.Active) {

revert CannotFulfillIfNotActive();

}

- if (proofCallbackData.computeResultsHash != keccak256(abi.encodePacked(computeResults))) {

- revert ComputeResultsHashDoesNotMatch();

- }

// ...

• AxiomV2Query.sol#L301-L329:

19

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L301-L329

function fulfillOffchainQuery(

IAxiomV2HeaderVerifier.MmrWitness calldata mmrWitness,

bytes32[] calldata computeResults,

bytes calldata proof,

AxiomV2Callback calldata callback,

address caller,

bytes32 userSalt

) external onlyRole(PROVER_ROLE) onlyNotFrozen {

AxiomProofCallbackData memory proofCallbackData = _verifyAndWriteResult(mmrWitness, proof);

+ if (proofCallbackData.computeResultsHash != keccak256(abi.encodePacked(computeResults))) {

+ revert ComputeResultsHashDoesNotMatch();

+ }

uint256 queryId = uint256(

keccak256(

abi.encodePacked(

caller,

userSalt,

proofCallbackData.queryHash,

keccak256(abi.encodePacked(callback.target, callback.extraData)),

address(0)

)

)

);

- if (proofCallbackData.computeResultsHash != keccak256(abi.encodePacked(computeResults))) {

- revert ComputeResultsHashDoesNotMatch();

- }

if (queries[queryId].state != AxiomQueryState.Inactive) {

revert CannotFulfillFromOffchainIfNotInactive();

}

// ...

• AxiomV2Query.sol#L351-L385:

20

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L351-L385

function refundQuery(AxiomV2QueryWitness calldata queryWitness) external onlyNotFrozen {

+ if (msg.sender != queryWitness.refundee) {

+ revert CannotRefundIfNotRefundee();

+ }

uint256 queryId = uint256(

keccak256(

abi.encodePacked(

queryWitness.caller,

queryWitness.userSalt,

queryWitness.queryHash,

queryWitness.callbackHash,

queryWitness.refundee

)

)

);

- if (msg.sender != queryWitness.refundee) {

- revert CannotRefundIfNotRefundee();

- }

if (queries[queryId].state != AxiomQueryState.Active) {

revert CannotRefundIfNotActive();

}

if (block.number <= queries[queryId].deadlineBlockNumber) {

revert CannotRefundBeforeDeadline();

}

balances[queryWitness.refundee] += queries[queryId].payment;

queries[queryId] = AxiomQueryMetadata({

state: AxiomQueryState.Inactive,

deadlineBlockNumber: 0,

payee: address(0),

payment: 0

});

emit QueryRefunded(queryId, queryWitness.refundee);

}

• AxiomV2Query.sol#L457-L471:

function _sendQuery(uint256 queryId, uint64 maxFeePerGas, uint32 callbackGasLimit, address caller,

uint256 deposit),!

internal

{

if (queries[queryId].state != AxiomQueryState.Inactive) {

revert QueryIsNotInactive();

}

- uint256 maxQueryPri = _getMaxQueryPri(maxFeePerGas, callbackGasLimit);

if (deposit > 0) {

_recordDeposit(caller, deposit);

}

+ uint256 maxQueryPri = _getMaxQueryPri(maxFeePerGas, callbackGasLimit);

if (maxQueryPri > balances[caller]) {

revert EscrowAmountExceedsBalance();

}

21

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L457-L471

Axiom: We decided not to make these changes to retain clarity (since the gas benefits are relatively small and
only in the case that validation fails).

Spearbit: Acknowledged.

5.4 Informational

5.4.1 Naive provers may spend more funds to compute than the amount awarded to them

Severity: Informational

Context: AxiomV2Query.sol#L573

Description: In the current implementation, the maxFeePerGas within a query can be set to values close to zero. In
the case of a naive prover fulfilling the query without checking for these low values, the prover may earn less funds
than what costed them to perform the computations (for example if the query has set up a malicious callback that
does expensive computation, as sometimes there are actual ways to profit from this, such as having the callback
mint the XEN token).

Recommendation: Consider adding a warning to make sure that the prover is selective about each query's
maxFeePerGas. Plus, making it something the prover calculates off-chain (versus adding more complexity in the
contract to solve this) could save gas and be cheaper overall.

Axiom: We will offer an off-chain SDK which will choose a sensible value, and it seems the prover will need to
be careful with query fulfillment / settings when faced with adversarial queries. Also, added a lower bound on
maxFeePerGas in PR 100.

Spearbit: Technically the increaseQueryGas() function doesn't verify the newMaxFeePerGas against the lower
bound. Do you think it's worth adding this for completeness? The function does check that newMaxQueryPri >

oldAmount anyways, so it's not a big deal to leave it as-is.

Axiom: Agree, it makes sense to add validation. Implemented in PR 132.

Spearbit: Fixed.

5.4.2 Remove redundant code to compute queryId

Severity: Informational

Context: AxiomV2Query.sol#L253, AxiomV2Query.sol#L311, AxiomV2Query.sol#L352, AxiomV2Query.sol#L392

Description: The queryId variable is computed manually several times within AxiomV2Query, although there
exists an internal function called _computeQueryId that performs a similar computation.

Recommendation: Consider refactoring _computeQueryId to a more general case to substitute the manual com-
putations of queryId in the affected lines. This change would contribute to an improved code modularity and
maintenance.

Axiom: This issue has been addressed in PR 98.

Spearbit: Fixed, together with a subsequent PR 104 to have all queryId computations utilise _computeQueryId().

22

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L573
https://medium.com/neptune-mutual/decoding-ftxs-gas-limit-vulnerability-b2f71a338a7b
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/100
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/132
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L253
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L311
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L352
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L392
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L431
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L431
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/98
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/104

5.4.3 Passing ETH to callback target is unsupported

Severity: Informational

Context: AxiomV2Query.sol#L287, AxiomV2Query.sol#L336

Description: The current implementation does not allow to send ETH in the callback, because the fulfillQuery

and fulfillOffchainQuery functions aren't payable and the call forwards 0 ETH by default. Some applications
that may be called via this callback could work with WETH tokens, but others might specifically need ETH.

Recommendation: Consider documenting this limitations to avoid unsuccessful callbacks.

Axiom: This issue has been addressed in PR 97.

Spearbit: Fixed. The 0 ETH forwarding limitation has been documented in IAxiomV2Query:

/// The callback will correspond to the function signature of `axiomV2Callback` or

/// `axiomV2OffchainCallback` in `IAxiomV2Client`. It is not payable, and no ETH will

/// be forwarded.

5.4.4 Callback call success is not monitored

Severity: Informational

Context: AxiomV2Query.sol#L287, AxiomV2Query.sol#L336,

Description: Within fulfillQuery and fulfillOffchainQuery, Axiom allows calling a callback target at the end
of execution. The return of the low-level call is never checked nor emitted.

Recommendation: For the sake of monitoring and transparency, consider emitting either the success or failure of
the callback call, as other operations may depend on it.

Axiom: This issue has been addressed in PR 97.

Spearbit: Verified. Note that if no callback is requested, the new event will have callbackSucceeded as false.
Documentation about this behavior has been explicitly added in PR 133.

5.4.5 frozen state in withdraw introduces a centralization risk

Severity: Informational

Context: AxiomV2Query.sol#L421

Description: The system currently has an onlyNotFrozen mechanism implemented for both asset inflows (de-
posits) and outflows (withdrawals), as well as for payable mechanisms. While this serves as a protective measure
against unforeseen bugs and malicious activities, it also introduces a centralization risk. The ability to freeze with-
drawals means that assets could become locked within the system, reducing user trust and potentially harming the
credibility of the platform.

Recommendation: To mitigate this centralization risk and increase user trust in the system, it is recommended to
allow withdrawals even in a paused or frozen state. This ensures that users can retrieve their assets regardless of
the system's state, preventing asset lock-up.

However, it is important to balance this change with the need for security:

"We had initially chosen onlyNotFrozen on withdraw in order to avoid scenarios where some unfore-
seen bug allows a user to drain all the funds in the system. It's a fair point that removing that can
decrease centralization, especially as we don't intend the system to hold substantial funds beyond
what's currently being used for transacting."

The team’s initial decision to restrict withdrawals under the onlyNotFrozen condition was made to protect against
potential vulnerabilities that could lead to asset drainage. To address this concern while still enabling withdrawals
during a freeze or pause state, additional security measures and monitoring should be implemented to quickly
detect and respond to any unusual or malicious activity.

23

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L287
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L336
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/97
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L287
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L336
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L58-L82
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L301
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/106
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/133
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/e61ca81987bb8cf8bce4668b38f033919a9e99e6/contracts/query/AxiomV2Query.sol#L421

Axiom: The fix has been implemented in PR 99.

In deployment, as part of our standard procedures we plan to actively monitor:

• Any activity on permissioned multisigns.

• Any unusual withdrawals or balance transfers.

Spearbit: Fixed. Withdrawals can no longer be frozen.

5.4.6 Missing indexed event parameters

Severity: Informational

Context: ExampleV2Client.sol#L7, IAxiomV2HeaderVerifier.sol#L15, IAxiomV2Query.sol#L163-L195,
IAxiomV2Query.sol#L248, IAxiomResultStore.sol#L8, IAxiomV2Prover.sol#L10, IAxiomV2Events.sol#L19-L32

Description: Axiom contracts make extensive use of events to log changes in state and facilitate off-chain integra-
tions. However, multiple events across the code don't have any parameter indexed. Indexing fields within events
allows off-chain tools to filter and access these fields more quickly, improving the efficiency of data retrieval.

Notice that, while indexing is beneficial for data retrieval, it comes with a cost for each one. Each indexed field in
an event costs additional gas when the event is emitted, therefore, looking for a balance where the most significant
parameters are the ones indexed it's really important.

Recommendation: Consider adding indexed keyword to events where some fields truly need to be indexed for
later analysis.

Axiom: This issue has been addressed in PR 95.

Spearbit: Fixed.

5.4.7 Use named imports to improve clarity and efficiency

Severity: Informational

Context: IAxiomV2Query.sol#L4-L5, AxiomV2Client.sol#L4, AxiomV2Core.sol#L12, Ax-
iomV2HeaderVerifier.sol#L15, AxiomV2Query.sol#L14

Description: IAxiomV2Query contract currently imports the entire IAxiomV2Oracle and IAxiomV2Client inter-
faces, even though it may not be utilizing all the functions or variables defined within these interfaces. This ap-
proach can lead to unnecessary bloating of the contract's bytecode, potentially increasing deployment costs and
making the codebase harder to read and maintain.

Another relevant case is regarding AxiomV2Configuration, used multiple times in the code to retrieve different
constant values but not using most of them.

Recommendation: Adopt named imports to explicitly state which functions or variables are being used from the
imported interfaces, this would improve readability and maintainability by making the dependencies of the contract
more explicit.

Axiom: This issue has been addressed in PR 86.

Spearbit: Fixed.

24

https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/99
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/ExampleV2Client.sol#L7
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2HeaderVerifier.sol#L15
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L163-L195
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L248
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomResultStore.sol#L8
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Prover.sol#L10
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Events.sol#L19-L32
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/95
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L4-L5
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/3254e9ecee834f73b05da75eb1456fa840dc06a9/contracts/core/AxiomV2Core.sol#L12
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L15
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L15
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/e61ca81987bb8cf8bce4668b38f033919a9e99e6/contracts/query/AxiomV2Query.sol#L14
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/86

5.4.8 Usage of axiomProverAddress can be simplified

Severity: Informational

Context: AxiomV2Query.sol

Description: For an address to fulfill a query in the AxiomV2Query contract, it needs to have the PROVER_ROLE. At
initialization, this role is granted to the axiomProverAddress, which is an entirely separate contract that has its own
access control management.

So, there are technically two different ways that a query can be fulfilled by an address:

1. If the address is granted the PROVER_ROLE in the AxiomV2Query contract directly.

2. If the address has sufficient permission in the AxiomV2Prover (this is based on a combination of its own
PROVER_ROLE and the allowedProvers mapping).

Recommendation: Since the AxiomV2Prover has its own access management, consider simplifying the Ax-

iomV2Query to not use the PROVER_ROLE.

Instead, the fulfillQuery() and fulfillOffchainQuery() functions could directly require that msg.sender ==

axiomProverAddress. Since the axiomProverAddress is not currently used in the AxiomV2Query contract (other
than as a public storage variable), it might have been intended that the PROVER_ROLE was only ever granted to the
axiomProverAddress.

Axiom: Fixed in PR 87.

Spearbit: Fixed.

5.4.9 Open up access to addAllowedProver and removeAllowedProver

Severity: Informational

Context: AxiomV2Prover.sol#L80-L87

Description: Permission management of provers to callback targets is restricted to the TIMELOCK_ROLE, which
could be too restrictive. This is because the callback target is a user-specified param, so it might be better to allow
the callback target to add & remove provers by themselves.

Recommendation: Instead of onlyRole(TIMELOCK_ROLE), restrict the function caller to target.

Axiom: When implementing, we realized allowing both TIMELOCK_ROLE and target is not that easy in our current
permissions model, so we decided to postpone any changes here for the future.

Spearbit: Acknowledged.

5.4.10 PMMR size initialization can be more accurate

Severity: Informational

Context: AxiomV2HeaderVerifier.sol#L100-L109, AxiomV2HeaderVerifier.sol#L198-L209

Description: In both main verifyQueryHeaders() cases, a PMMR is initialized with a size that may not be
divisible by BLOCK_BATCH_SIZE, despite the paddedLeaf always being initialized to bytes32(0). So, the size can
initially be too large for what the PMMR represents. Fortunately, this is always resolved in a follow-up call to
updatePaddedLeaf(), but it may be easier to understand the code if the size is initialized correctly.

Recommendation: Change the PMMR size initialization as follows:

25

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/87
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L80-L87
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L100-L109
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L198-L209

PaddedMerkleMountainRange.PMMR memory proofPmmr = PaddedMerkleMountainRange.PMMR({

paddedLeaf: bytes32(0),

completeLeaves: MerkleMountainRange.MMR({

peaks: _copyPeaks(

mmrWitness.proofMmrPeaks, BLOCK_BATCH_DEPTH, mmrWitness.proofMmrPeaks.length -

BLOCK_BATCH_DEPTH,!

),

peaksLength: uint32(mmrWitness.proofMmrPeaks.length) - BLOCK_BATCH_DEPTH

}),

- size: proofMmrSize

+ size: proofMmrSize - (proofMmrSize % BLOCK_BATCH_SIZE)

});

PaddedMerkleMountainRange.PMMR memory snapshotPmmr = PaddedMerkleMountainRange.PMMR({

paddedLeaf: bytes32(0),

completeLeaves: MerkleMountainRange.MMR({

peaks: _copyPeaks(

mmrWitness.mmrComplementOrPeaks,

BLOCK_BATCH_DEPTH,

uint32(mmrWitness.mmrComplementOrPeaks.length) - BLOCK_BATCH_DEPTH

),

peaksLength: uint32(mmrWitness.mmrComplementOrPeaks.length) - BLOCK_BATCH_DEPTH

}),

- size: mmrWitness.snapshotPmmrSize

+ size: mmrWitness.snapshotPmmrSize - (mmrWitness.snapshotPmmrSize % BLOCK_BATCH_SIZE)

});

Axiom: Fixed in PR 89.

Spearbit: Fixed.

5.4.11 Idempotent checks may be performed to avoid emitting events with no changes

Severity: Informational

Context: AxiomV2Query.sol#L114-L131, AxiomV2Core.sol#L257-L270

Description: TIMELOCK_ROLE may call some important functions as updateAxiomProverAddress, updateAxiom-
HeaderVerifierAddress or updateVerifierAddress with the actual value or call twice the same script that set
these values.

This can confuse people listening for important event emissions such as the change of the different actors ad-
dresses, that in fact, didn't changed.

Recommendation: Consider to add a check to validate if the input value it's not the actual value.

Axiom: Acknowledged. We expect these functions to be called only for:

• Major protocol upgrades.

• Recoveries from security incidents.

As a result, we expect them to be called extremely infrequently and would expect these event emissions to be
subject to manual inspection. As a result, we don't think filtering out idempotent updates would be valuable here.

Spearbit: Acknowledged.

26

https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/89
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/AxiomV2Query.sol#L114-L131
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L257-L270

5.4.12 Favor Yul switch-case statements over multiple if statements

Severity: Informational

Context: MerkleTree.sol#L33-L63

Description: MerkleTree has a function called getEmptyHash() that returns the hash image of the Merkle root of
a tree of a user specified depth idx that has all zeroes as leaves. For the sake of optimization, these hashes are
pre-computed and returned by checking the user input idx on a series of if statements.

The aforementioned logic can be easily implemented in Yul through the switch-case statement, which is cheaper
gas-wise and makes the cases more readable, at the cost of adding some obscurity to the revert case (which
occurs when idx >= BLOCK_BATCH_DEPTH).

An example implementation would look as follows:

function getEmptyHash(uint256 depth) internal pure returns (bytes32 emptyHash) {

assembly {

switch depth

case 0 { emptyHash := 0x0 }

case 1 { emptyHash := 0xad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5 }

case 2 { emptyHash := 0xb4c11951957c6f8f642c4af61cd6b24640fec6dc7fc607ee8206a99e92410d30 }

case 3 { emptyHash := 0x21ddb9a356815c3fac1026b6dec5df3124afbadb485c9ba5a3e3398a04b7ba85 }

case 4 { emptyHash := 0xe58769b32a1beaf1ea27375a44095a0d1fb664ce2dd358e7fcbfb78c26a19344 }

case 5 { emptyHash := 0x0eb01ebfc9ed27500cd4dfc979272d1f0913cc9f66540d7e8005811109e1cf2d }

case 6 { emptyHash := 0x887c22bd8750d34016ac3c66b5ff102dacdd73f6b014e710b51e8022af9a1968 }

case 7 { emptyHash := 0xffd70157e48063fc33c97a050f7f640233bf646cc98d9524c6b92bcf3ab56f83 }

case 8 { emptyHash := 0x9867cc5f7f196b93bae1e27e6320742445d290f2263827498b54fec539f756af }

case 9 { emptyHash := 0xcefad4e508c098b9a7e1d8feb19955fb02ba9675585078710969d3440f5054e0 }

default { // This could be further optimized if needed

let ptr := mload(0x40)

mstore(

ptr,

// bytes4(keccak256(Error(string))) << 224

0x08c379a000

)

mstore(add(ptr, 0x04), 0x20)

mstore(add(ptr, 0x24), 30)

mstore(add(ptr, 0x44), "depth must be in range [0, 10)")

revert(ptr, 0x64)

}

}

}

Recommendation: Consider using Yul switch-case over multiple consecutive if statements for the sake of read-
ability and reducing gas costs.

Axiom: Acknowledged. We think keeping the existing if structure will be simpler for clarity for now.

Spearbit: Acknowledged.

27

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleTree.sol#L33-L63

5.4.13 Goerli testnet will stop working in 2024

Severity: Informational

Context: AxiomV2Configuration.sol#L64

Description: The Goerli testnet is scheduled to be deprecated and will stop working in 2024. As this testnet is the
only environment for testing and development purposes in the project, it is important to start planning a change to
ensure a smooth transition and continuous operation of our applications and smart contracts.

Recommendation: It is recommended to add support for alternative testnets such as Sepolia or Holesky to ensure
that there is a environment for testing and development once Goerli is no longer available.

Axiom: This issue has been addressed in PR 76 by adding the additional testnet chain IDs in
AxiomV2Configuration.sol.

Spearbit: Fixed.

5.4.14 Variable naming improvements

Severity: Informational

Context: AxiomV2Query.sol#L456-L457, AxiomV2HeaderVerifier.sol#L226

Description: The following variables can be renamed to avoid shadowing, or for greater clarity:

- uint256 deposit

+ uint256 depositAmount

- uint256 appendLeft

+ uint256 appendRemaining

Recommendation: As per description.

Axiom: Fixed in PR 78.

Spearbit: Fixed.

5.4.15 Incorrect peaksLength value set for MMRs

Severity: Informational

Context: AxiomV2HeaderVerifier.sol#L113, AxiomV2HeaderVerifier.sol#L113

Description: proofBatchMmr and the MMR used for the snapshotLeaf generation has their sizes incorrectly set
to BLOCK_BATCH_SIZE instead of BLOCK_BATCH_DEPTH.

There aren't any repercussions in the current implementation because getComplementMerkleRoot(BLOCK_-

BATCH_DEPTH, ...) / getZeroPaddedMerkleRoot(BLOCK_BATCH_DEPTH) is called respectively after, which only
utilises BLOCK_BATCH_DEPTH peaks, with no further usage of these structures.

Recommendation:

- peaksLength: BLOCK_BATCH_SIZE

+ peaksLength: BLOCK_BATCH_DEPTH

Axiom: The issue has been addressed in PR 79.

Spearbit: Fixed.

28

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/configuration/AxiomV2Configuration.sol#L64
https://chainlist.org/chain/11155111
https://holesky.etherscan.io/
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/76
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L456-L457
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L226
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/78
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L113
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L217
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/79

5.4.16 virtual is redundant in interfaces and it can be removed

Severity: Informational

Context: IAxiomV2Client.sol#L15-L31

Description: The functions axiomV2Callback() and axiomV2OffchainCallback() in the IAxiomV2Client inter-
face are both declared with the virtual keyword. This is no longer necessary as of Solidity version 0.8.0, as
functions in interfaces are implicitly virtual.

Recommendation: Remove the virtual keyword from these function declarations to clean up the code and
adhere to best practices. This will not change the functionality of the code, but it will make it cleaner and more in
line with current Solidity standards.

Axiom: This issue has been addressed in PR 77.

Spearbit: Fixed.

5.4.17 Unused logic and statements

Severity: Informational

Context: AxiomV2HeaderVerifier.sol#L4, AxiomV2HeaderVerifier.sol#L12, AxiomV2Prover.sol#L4,
IAxiomV2Verifier.sol#L4, IAxiomV2HeaderVerifier.sol#L4, IAxiomV2Query.sol#L4, IAxiomV2Query.sol#L144,
IAxiomV2Query.sol#L150, IAxiomV2Query.sol#L152, IAxiomV2Query.sol#L156, PaddedMerkleMountain-
Range.sol#L4, AxiomAccess.sol#L58-L63, AxiomAccess.sol#L73-L75, AxiomV2HeaderVerifier.sol#L275-L277

Description: The affected files contain unused logic or statements. This may be a leftover from either the devel-
opment or testing stages of the protocol. See below for the detailed list:

• Unused imports: AxiomV2HeaderVerifier.sol#L4, AxiomV2HeaderVerifier.sol#L12, AxiomV2Prover.sol#L4,
IAxiomV2Verifier.sol#L4, IAxiomV2HeaderVerifier.sol#L4, IAxiomV2Query.sol#L4, PaddedMerkleMountain-
Range.sol#L4.

• Unused errors: IAxiomV2Query.sol#L144, IAxiomV2Query.sol#L150, IAxiomV2Query.sol#L152,
IAxiomV2Query.sol#L156.

• Unused modifiers: AxiomAccess.sol#L58-L63.

• Unused functions: AxiomAccess.sol#L73-L75.

• Redundant logic: AxiomV2HeaderVerifier.sol#L275-L277.

Recommendation: Consider removing the statements and logic from the affected files to improve readability.

Axiom: This issue has been addressed in PR 80, except for AxiomAccess.sol#L73-L75 to conform to the Open-
Zeppelin convention.

Spearbit: Fixed.

5.4.18 Absent/incomplete natspec affects readability and maintenance

Severity: Informational

Context: IAxiomV2Client.sol#L4-L32, AxiomTimelock.sol#L24-L29, AxiomTimelock.sol#L19-L22,
AxiomProxy.sol#L10, IAxiomV2State.sol#L17, IAxiomV2Query.sol#L115, AxiomV2Configuration.sol#L35,
Hash.sol#L5-L11, PaddedMerkleMountainRange.sol#L76, PaddedMerkleMountainRange.sol#L103,
IAxiomV2Verifier.sol#L30, AxiomV2Core.sol#L310, AxiomV2Query.sol#L532, MerkleMountainRange.sol#L87,
MerkleMountainRange.sol#L117, PaddedMerkleMountainRange.sol#L22, PaddedMerkleMountain-
Range.sol#L58, IAxiomV2Query.sol#L36, AxiomV2HeaderVerifier.sol#L71, AxiomV2HeaderVerifier.sol#L82,
IAxiomV2Events.sol#L5-L11, IAxiomV2HeaderVerifier.sol#L7-L11, IAxiomV2Verifier.sol#L9-L15,
AxiomAccess.sol#L73-L89, Hash.sol#L4, MerkleMountainRange.sol#L91, AxiomV2Core.sol#L52,
AxiomAccess.sol#L55, AxiomV2Client.sol#L17-L65, AxiomV2Client.sol#L6-L16, ExampleV2Client.sol#L6-L14,
ExampleV2Client.sol#L16-L42, IAxiomV2Query.sol#L8-L18, AxiomProxy.sol#L10

29

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/client/IAxiomV2Client.sol#L15-L31
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/77
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L12
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Verifier.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2HeaderVerifier.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L144
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L150
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L152
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L156
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L58-L63
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L73-L75
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L275-L277
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L12
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Prover.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Verifier.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2HeaderVerifier.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L144
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L150
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L152
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L156
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L58-L63
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L73-L75
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L275-L277
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/80
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L73-L75
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/client/IAxiomV2Client.sol#L4-L32
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomTimelock.sol#L24-L29
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomTimelock.sol#L19-L22
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomProxy.sol#L10
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2State.sol#L17
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L115
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/configuration/AxiomV2Configuration.sol#L35-L57
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/Hash.sol#L5-L11
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L76
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L103
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Verifier.sol#L30
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L310
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L532
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L87
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L117
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L22
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L58
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L58
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L36
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L71
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L82
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Events.sol#L5-L11
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2HeaderVerifier.sol#L7-L11
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Verifier.sol#L9-L15
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L73-L89
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/Hash.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L91
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L52
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L55
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L17-L65
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L6-L16
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/ExampleV2Client.sol#L6-L14
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/ExampleV2Client.sol#L16-L42
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L8-L18
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomProxy.sol#L10

Description: Comments are key to understanding the codebase logic. In particular, Natspec comments provide
rich documentation for functions, return variables and more. This documentation aids users, developers and
auditors in understanding what the functions within the contract are meant to do.

However, some functions within the codebase contain issues with respect to their comments with either no Natspec
or incomplete Natspec annotations, leading to partial descriptions of the functions.

Recommendation: Comments are key to understanding the codebase logic. In particular, Natspec comments
provide rich documentation for functions, return variables and more. This documentation aids users, developers
and auditors in understanding what the functions within the contract are meant to do.

However, some functions within the codebase contain issues with respect to their comments with either no Natspec
or incomplete Natspec annotations, leading to partial descriptions of the functions.

• Missing Natspec: IAxiomV2Client.sol#L4-L32, AxiomTimelock.sol#L24-L29, AxiomTimelock.sol#L19-L22,
AxiomProxy.sol#L10, AxiomV2Core.sol#L52, AxiomV2Client.sol#L6-L16, ExampleV2Client.sol#L6-L14, Ax-
iomProxy.sol#L10

• Incomplete Natspec:

– IAxiomV2State.sol#L17. Missing startBlockNumber param natspec.

– IAxiomV2Query.sol#L115

– AxiomV2Configuration.sol#L35

– Hash.sol#L5-L11

– PaddedMerkleMountainRange.sol#L76. Missing paddingSize param natspec.

– PaddedMerkleMountainRange.sol#L103. Missing paddingSize param natspec.

• Unclear comment

– IAxiomV2Verifier.sol#L30. The description seems like it should be similar to the natspec for end-

HashProofs[i][j] of updateHistorical(): endHashProofs[i][j] is the sibling of the Merkle

node at depth j, for j = 0, ..., 9.

– AxiomV2Core.sol#L310. It's unclear which expression the comment is referring to that evaluates to 0 /
1, and which variable on the left / right is referred to. Perhaps it should be something like // if i-th

bit = 1, proof is on the left, else, proof is on the right.

– IAxiomV2Query.sol#L8-L18. Missing documentation regarding difference in status from off-chain and
on-chain query status. "We call a query on-chain if it is requested on-chain with sendQuery or send-
QueryWithIpfs data. We also allow a query to be fulfilled on-chain without an on-chain request (which
we call off-chain), but to make sure the off-chain queries don't interfere with on-chain queries, we require
that they are in status Inactive."

• Incorrect comment

– AxiomV2Query.sol#L532:

- 16 groups of 32

+ 14 groups of 32

– MerkleMountainRange.sol#L87:

- appendSingle

+ appendLeaf

– MerkleMountainRange.sol#L117:

- to_add

+ toAdd

– PaddedMerkleMountainRange.sol#L22:

30

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/client/IAxiomV2Client.sol#L4-L32
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomTimelock.sol#L24-L29
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomTimelock.sol#L19-L22
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomProxy.sol#L10
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L52
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L6-L16
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/ExampleV2Client.sol#L6-L14
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomProxy.sol#L10
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomProxy.sol#L10
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2State.sol#L17
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L115
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/configuration/AxiomV2Configuration.sol#L35-L57
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/Hash.sol#L5-L11
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L76
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L103
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Verifier.sol#L30
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/core/AxiomV2Core.sol#L310
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L8-L18
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2Query.sol#L532
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L87
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L117
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L22

- The an MMR of the complete leaves of the PMMR

+ An MMR of the complete leaves of the PMMR

– PaddedMerkleMountainRange.sol#L58:

- concatenatation

+ concatenation

– IAxiomV2Query.sol#L36:

- AxiomResultstore

+ AxiomResultStore

– AxiomV2HeaderVerifier.sol#L71:

- committment

+ commitment

– AxiomV2HeaderVerifier.sol#L82:

- transation

+ transaction

– IAxiomV2HeaderVerifier.sol#L29-L30:

It is expected to be a Merkle root of a padded leaf exactly when

- snapshotPmmrSize - (snapshotPmmrSize % BLOCK_BATCH_SIZE) >= proofPmmrSize

+ snapshotPmmrSize % BLOCK_BATCH_SIZE != 0

• Missing comment / description

– IAxiomV2Events.sol#L5-L11

– IAxiomV2HeaderVerifier.sol#L7-L11

– IAxiomV2Verifier.sol#L9-L15

– AxiomAccess.sol#L73-L89

– Hash.sol#L4

– MerkleMountainRange.sol#L91. Users of this library may assume that the values of leaves are
unchanged. It's best to leave a warning that leaves will be mutated (also have the warning in
PMMR.appendCompleteLeaves() since it also uses this function.

– AxiomAccess.sol#L55 is missing * Granting the AXIOM role to address(0) will enable this

role for everyone.

– AxiomProxy.sol#L10

• @inheritdoc can be used for inherited Natspec: AxiomV2Client.sol#L17-L65, ExampleV2Client.sol#L16-
L42.

Axiom: This issue has been addressed in PR 75.

All changes have been made aside from:

• IAxiomV2Verifier.sol#L30. We believe the comment is actually accurate.

Spearbit: Mostly fixed, although a couple more spelling mistakes were caught:

31

https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/PaddedMerkleMountainRange.sol#L58
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2Query.sol#L36
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L71
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/query/AxiomV2HeaderVerifier.sol#L82
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2HeaderVerifier.sol#L29-L30
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Events.sol#L5-L11
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/query/IAxiomV2HeaderVerifier.sol#L7-L11
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Verifier.sol#L9-L15
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L73-L89
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/Hash.sol#L4
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/MerkleMountainRange.sol#L91
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomAccess.sol#L55
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/libraries/access/AxiomProxy.sol#L10
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/AxiomV2Client.sol#L17-L65
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/ExampleV2Client.sol#L16-L42
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/client/ExampleV2Client.sol#L16-L42
https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/75
https://github.com/axiom-crypto/axiom-v2-contracts-working/blob/41fab5e0f39811178a476ab2eac751290cc422d8/contracts/interfaces/core/IAxiomV2Verifier.sol#L30

- pulbic

+ public

// From PR 106

- OnlyPayeeCanFullfillOffchainQuery

+ OnlyPayeeCanFulfillOffchainQuery

Axiom: Addressed in PR 131, thanks for catching these.

Spearbit: Fixed.

32

https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/131

6 Additional Comments

The Spearbit team reviewed Axiom’s contracts-v2-working holistically on PR 74 and determined that all issues
were resolved and no new issues were identified.

33

https://github.com/axiom-crypto/axiom-v2-contracts-working/pull/74

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	Medium Risk
	Lack of upper bounds in queryDeadlineInterval may lead to locked funds and/or DoS

	Low Risk
	[Axiom - 01] Paying to caller of fulfillOffchainQuery is vulnerable to mempool sniping
	[Axiom - 02] queryId should commit to targetChainId
	[Axiom - 03] Padded Merkle mountain range cannot be updated after updateOld
	Missing non-zero checks allow event emission spamming
	Lack of zero address check in withdraw and deposit can burn ether
	No enforcement of callback gas limit for on-chain queries
	Allow refundQuery to a custom to address
	Add code length check for callback.target
	increaseQueryGas can be called even if the contracts are in a frozen state
	Missing sanity zero-address checks may lead to undesired behavior
	Missing input validation on fee parameters
	Use ExcessivelySafeCall for external calls where return value isn't checked
	Excess ETH sent for increaseQueryGas() isn't accounted for

	Gas Optimization
	Boundary equality case can be moved to do proofMmrPeaks extension
	Minimise external calls
	Intentional appendCompleteLeaves() no-op can be removed
	bool costs more gas than uint
	Arithmetic operations can be optimized for gas savings
	Usage of custom errors and revert strings inconsistency
	Multiple peakLength typecasting to uint32
	start initialization can be optimized
	Iterators can be optimized
	CHAIN_ID can be set to internal due to the existence of a custom getter
	User input validation should have preference over other actions

	Informational
	Naive provers may spend more funds to compute than the amount awarded to them
	Remove redundant code to compute queryId
	Passing ETH to callback target is unsupported
	Callback call success is not monitored
	frozen state in withdraw introduces a centralization risk
	Missing indexed event parameters
	Use named imports to improve clarity and efficiency
	Usage of axiomProverAddress can be simplified
	Open up access to addAllowedProver and removeAllowedProver
	PMMR size initialization can be more accurate
	Idempotent checks may be performed to avoid emitting events with no changes
	Favor Yul switch-case statements over multiple if statements
	Goerli testnet will stop working in 2024
	Variable naming improvements
	Incorrect peaksLength value set for MMRs
	virtual is redundant in interfaces and it can be removed
	Unused logic and statements
	Absent/incomplete natspec affects readability and maintenance

	Additional Comments

